Year 2 calculation guidance

Use partitioning to add numbers, first with concrete apparatus then as a possible mental method.
Have a range of mental methods for calculating first with numbers to 20 , then with numbers to 100 e.g. breaking number: apart to use them flexibly, this may be with a bridging strateg e.g. $7+5$ could be thought of as $7+3+2$ or $5+5+2$), o compensating strategy (e.g. $7+9$ could be thought of as $7+10$ then -1) or by using a near double (e.g. $7+8=14+1$).

Learn to add three numbers $4+7+6=17$ Put 4 and 6 together to make 10 . Add on 7 .

$$
\begin{aligned}
(4+7+6 & =10+7 \\
& =17
\end{aligned}
$$

Use number bonds e.g. 4+6=10 to work out 40+60=100

- Subtraction -

minus Subtract take away less than difference between

Methods from Year 1 to be continued in

 Year 2: Use concrete apparatus, part-part whole, number line or 100 square, then mentally count back on a number line. See Year 1 calculation guidance.Subtract using concrete objects such as Numcion, make the whole and take away the correct amount. Then progress to pictorial representations and mental methods.

Start at the bigger number and count back the smalle number showing the jumps on the number line.

x Multiplication x

Multiply times lots of groups of multiple of product
Methods from Year 1 to be continued in Year 2: Use knowledge of doubles to ten to support halving and doubling larger numbers. Repeated addition. Group objects and recognise number sequences e.g. $2 s, 5 s$ and 10 s . See Year 1 calculation guidance.

By the end of the year pupils should recall all multiplication facts for the 2,5 and 10 times tables.

Understand multiplication is about equal groups and use arrays to show this. Also be able to use these arroys to show and understand that multiplication is commutative.

Understand multiplication as scaling. digit numbers.
No. bonds to 100 (at least with multiples of 10). Understand the number line as a continuum. Understand that subtraction is the inverse of addition (Numicon is a particularly useful

\qquad
g. This
\div Division \div
Share equally group equally divide remainder factor
Methods from Year 1 to be continued in Year 2: Understand division as sharing equally into groups. Share into groups using concrete apparatus then move to pictorial representations. See Year 1 calculation guidance.

By the end of the year pupils should recall all division facts for the 2,5 and 10 times tables.

5 hops in 15 . How brie is each hop?
$15+5=3$

Link division to multiplication by creating an array and thinking about the number sentences that can be created.

Eg $15 \div 3=5 \quad 5 \times 3=15$
$15 \div 5=3 \quad 3 \times 5=15$

