St Francis of Assisi

Progression in calculation Policy

At St Francis of Assisi, Christ is at the centre and the children are at the heart of our whole school learning community in pursuit of excellence in all aspects of school life. We work collaboratively to identify and harness potential to be the very best that we can be. We maximise opportunities for all in order to acquire essential life skills and reach our full potential as global citizens.

Before children move to written methods, they need:

- To understand the number system
- Know some number facts
- Have good mental strategies / mental agility!
- Be confident use concrete apparatus and pictorial representations to solve problems and explain their reasoning.

When children move to written methods they need to

 think...- What will the answer be roughly?
- Can I work it out in my head?
- What can I use to help me? Do I need a written method?
- Does that answer my question?
- Does it make sense? Can I check?

Purpose of the Policy:

- To make teachers and parents aware of the strategies that pupils are formally taught within each year group that will support them to perform mental and written calculations. Pupils should not move on through the methods until they have secured and understood how to use the methods, including the concrete and pictorial representations.
- The policy supports teachers in identifying appropriate concrete apparatus and pictorial representations to help develop and secure understanding.

Aims of the policy:

- To ensure consistency and progression in our approach to calculation.
- To ensure that children develop an efficient, reliable, formal written method of calculation for all operations.
- To ensure that children can use these methods accurately with confidence and understanding.

How to use this policy:

- Use the policy as the basis of your planning but ensure you use previous or following years' guidance to allow for personalised learning.
- Always use Assessment for Learning to identify suitable next steps in calculation for groups of children.
- If, at any time, children are making significant errors, return to the previous stage in calculation.
- Always introduce a new concept/calculation using use suitable resources, models and images to support children's understanding of the calculation and place value, as appropriate.
- Encourage children to make sensible choices about the methods they use when solving problems.

Use pictures，tens frames，cubes and other concrete resources to to add two numbers together as a group or in a bar．

Children to prepare to add and subtract on a number line by counting on and back．

See addition appendix 1－combining two parts to make a whole：part－whole model．
＋Addition
Year 1
Method to be used by core of class

As year R plus：

Teach all the number bonds up to and including 10 and the related＇Fact Family＇for each fact．

$10=6+4$	$4+6=10$	00000
$10-4=6$	$10-6=4$	

Use concrete objects to combine groups to add and solve missing number problems．

$2+\ldots=5$ Show this using the part／whole model．

Understand place value－
can partition numbers and recombine numbers

Usually start with the biggest number（if counting on） $12+5=17$

Start at the larger number on the number line and count on in ones or in one jump to find the answer．
See addition appendix 1－combining two parts to make a whole：part－whole model．Appendix 2 starting at the bigger number and counting on．
More sum Altogether

Year 2

Method to be used by core of class
As year 1 plus：

$?$	
21	

T	\bigcirc
皿罣面	－
	－0ロロロ

Addition can be done in any order（commutative）
$34+56$ or $56+34$
Understand place value－can partition numbers \＆recombine numbers
$37=30+7 \quad 30+7=37$
Use partitioning to add numbers，first with concrete apparatus， then as a possible mental method．
Have a range of mental methods for calculating first with numbers to 20 ，then with numbers to 100 e．g．breaking numbers apart to use them flexibly，this may be with a bridging strategy （e．g． $7+5$ could be thought of as $7+3+2$ or $5+5+2$ ），a compensating strategy（e．g．7＋9 could be thought of as $7+10$ then -1 ）or by using a near double（e．g． $7+8=14+1$ ）．

Learn to add three numbers $4+7+6=17$
Put 4 and 6 together to make 10．Add on 7 ．

Use number bonds e．g．4＋6＝10 to work out $40+60=100$
See addition appendix 2 starting at the bigger number and counting on．Appendix 3 regrouping to make 10．Appendix 4 adding three single digits．

Add tbus Totab	+ Addition	More ¢um	Altogiether
Year 3 Method to be used by core of class	Year 4 Method to be used by core of class	$\text { Year } 5$ Method to be used by core of class	Year 6 Method to be used by core of class
As year 2 plus: Understand place value - can partition numbers \& recombine numbers to support column addition. $24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters. Expanded addition, TU then TU crossing tens barriers, then HTU (three digits) $\begin{aligned} & 34+62= \\ & 30+4 \\ & \frac{60+2}{\underline{90+6}=96} \\ & 494+368= \\ & 400+90+4 \\ & \frac{300+60+8}{700+150+12}=862 \end{aligned}$ then Compact addition $\begin{array}{r} 494 \\ +368 \\ \hline \frac{862}{11} \end{array}$ See addition appendix 5 column method- no regrouping and appendix 6 column method regrouping (bridging ten)	As year 3 plus: Add ones, tens, hundreds and thousands to a four-digit number Children can draw a pictoral representation of the columns and place value counters to further support their learning and understandina. Compact addition (integers only) with numbers up to four digits e.g. $\begin{array}{r} 7648 \\ +1486 \\ \hline 9134 \\ \hline 111 \end{array}$ Expanded addition may be used for decimals in real contexts e.g. money and length. £11.35+ £12.43= $\begin{aligned} & £ 10+£ 1+30 p+5 p+ \\ & \underline{£ 10+£ 2+40 p+3 p} \\ & \underline{£ 20+£ 3+70 p+8 p}=£ 23.78 \end{aligned}$ See addition appendix 5 column method- no regrouping and appendix 6 column method regrouping (bridging ten)	As year 4 plus: Compact addition with numbers larger than four digits. Compact addition with decimals to two places. e.g.$\begin{array}{r} 32.75 \\ +48.64 \\ \hline 81.39 \\ \hline 11 \end{array}$2 3 . 3 6 1 9 . 0 8 0 5 9 . 7 7 0 + 1 . 3 $\mathbf{0}$ $\mathbf{0}$ 9 3 . 5 1 1 2 1 2	As year 5 plus: Compact addition involving large numbers. Compact addition with decimals to three places. e.g. $24.5+36.238$ $\begin{array}{r} 24.500 \\ +36.238 \\ \hline \frac{60.738}{1} \end{array}$

¢ひరtract take શWのy be	sthan - Subtraction - min	differebce between
Year R Method to be used by core of class	Year 1 Method to be used by core of class	Year 2 Method to be used by core of class
Use physical objects, counters, cubes etc to show how objects can be taken away. Imagine one less spot Use counters and bead strings, move them away from the group as you take them away counting backwards as you go. See subtraction appendix 1 taking away ones and appendix 2 counting back.	As year R plus: $15-3=12 \quad \underset{\substack{\text { sen } \\ 6+!=10 \\ 10-6=? \\ l+6=10 \\ 10-4=6}}{ }$ Understand that subtraction can be seen as taking away and finding the difference. Use the part-whole model to take away. The difference between II and 14 is 3 . First with concrete apparatus, then number line or 100 square, then mentally. Count back on a number line or number track when secure with concrete apparatus. See subtraction appendix 1 taking away ones, appendix 2 counting back, appendix 3 finding the difference and appendix 4 part-whole model.	As year 1 plus: Subtract using concrete objects such as Numcion, make the whole and take away the correct amount. Then progress to pictorial representations and mental methods. 48-12 = Start at the bigger number and count back the smaller number showing the jumps on the number line. This can progress all the way to counting back using two 2 digit numbers. No. bonds to 100 (at least with multiples of 10). Understand the number line as a continuum. Understand that subtraction is the inverse of addition (Numicon is a particularly useful10 6 4 image) and bar model. 6 10 See subtraction appendix 2 counting back, appendix 3 finding the difference and appendix 4 part-whole model and appendix 5 make 10 .

¢hare equabyy git	®quaby divide \div Division -	¢emainder factor quotient
Year R Method to be used by core of class	Year 1 Method to be used by core of class	Year 2 Method to be used by core of class
Introduce language and concept of sharing fairly and making equal groups.	Understand division as sharing equally into groups. Share into groups using concrete apparatus then move to pictorial representations. Finding half and quarter using the same methods. See division appendix 1 sharing objects into groups. Appendix 2 division as grouping. Appendix 3 division within arrays.	As Year 1 plus: By the end of the year pupils should recall all division facts for the 2,5 and 10 times tables. 5 hops in 15 . How big is each hop? $15 \div 5=3$ Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rc} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$ Finding remainers: Divide objects between groups and see how much is left over $14 \div 3=$ See division appendix 1 sharing objects into groups. Appendix 2 division as grouping. Appendix 3 division within arrays. Appendix 4 division with a remainder.

$\frac{\text { Share equal }}{\text { Year } 3}$	y divide	factor	
	Year 4 Agreed method to be used by core of class	Year 5 Agreed method to be used by core of class	Year 6 Agreed method to be used by core of class
As year 2 plus: Focus on understanding, representing and remembering times tables facts for $2,5,10,3,4$ and 8 times tables, including division facts. $4 \times 8=32.8 \times 4=32,32 \div 4=8,32 \div 8=4$ Use number lines to support repeated subtraction. ' 3 groups of 4 , with 1 left over' See division appendix 3 division within arrays. Appendix 4 division with a remainder.	As year 3 plus: Focus on understanding, representing and remembering times tables facts for ALL times tables up to 12×12 including division facts. It is especially important that children understand that division can be grouping or sharing. e.g. $12 \div 3=4$ 12 sweets between 3 people gives 4 sweets each. (3 groups of 4) 'How many 3 s in 12?' gives 4 groups of 3 See division appendix 3 division within arrays. Appendix 4 division with a remainder.	As year 4 plus: Short division, up to 4 digit numbers divided by 1 digit numbers e. 9 4251 $\div 3$ Including dealing with remainders in context. Or...Chunking on a number line to aid less able children. Multiply and divide whole numbers and those involving decimals by 10,100 and 1000. See division appendix 3 division within arrays. Appendix 4 division with a remainder. Appendix 5 short division.	As year 5 plus: Short division, up to 4 digit numbers divided by 1 or 2 digit numbers e.g. $423 \div 18$ $1 8 \longdiv { 4 ^ { 2 } 2 ^ { 3 } 3 \cdot \frac { 5 } { 0 } }$ or Long division $\begin{array}{r} 23.5 \\ 1 8 \longdiv { 4 2 3 . 0 } \\ -36 \\ \hline 63 \\ \frac{54}{90} \end{array}$ See division appendix 3 division within arrays. Appendix 4 division with a remainder. Appendix 5 short division, Appendix 6 long division.

Appendix

Progression in calculations linked to concrete apparatus, pictorial representations and abstract methods. When introducing a new method of calculation the concrete apparatus should be used first. Once this is secure pupils can then be moved onto pictorial representations and then abstract methods.

Addition:

Objective and Strategies	Concrete	Pictorial	Abstract
Appendix 1- Combining two parts to make a whole: partwhole model	Use cubes to add two numbers together as a group or in a bar.		
Appendix 2- Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.

| Appendix 3- |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Regrouping to make 10. |

Subtraction:

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract \\
\hline \begin{tabular}{l}
Appendix 1- \\
Taking away ones
\end{tabular} \& Use physical objects, counters, cubes etc to show how objects can be taken away.

$$
6-2=4
$$ \& Cross out drawn objects to show what has been taken away.

$$
15-3=12
$$ \& \[

$$
\begin{aligned}
& 18-3=15 \\
& 8-2=6
\end{aligned}
$$
\]

\hline Appendix 2Counting back \& | Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. |
| :--- |
| Use |
| counters and move them away from the group as you take them away counting backwards as you go. | \& | Count back on a number line or number track |
| :--- |
| Start at the bigger number and count back the smaller number showing the jumps on the number line. |
| This can progress all the way to counting back using two 2 digit numbers. | \& | Put 13 in your head, count back |
| :--- |
| 4. What number are you at? Use your fingers to help. |

\hline
\end{tabular}

Appendix 3- Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Count on to find the difference. Comparison Bar Models Draw bars to find the difference between 2 numbers. Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.
Appendix 4 Part- Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part part whole model.	5 10 Move to using numbers within the part whole model.
Appendix 5Make 10	$14-9=$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9 .	Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10 ? How many do we have left to take off?

Appendix 6- Column method without regrouping	Use Base 10 to make the bigger number then take the smaller number away. Show how you partition subtract. Again make the larger number first.	Draw the Base 10 or place value counters alongside the written calculation to help to show working.	$\begin{gathered} 47-24=23 \\ -20+7 \\ -20+4 \\ \hline 20+3 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction.
Appendix 7 - Column method with regrouping	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones.	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make. When confident, children can find their own way to record the exchange/regrouping. Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.	Children can start their formal written method by partitioning the number into clear place value columns. $\begin{array}{ccc} 728 & -582=146 \\ { }^{H} & 1 & u \\ { }^{6} 7 & 2 & 8 \\ 5 & 8 & 2 \\ \hline 1 & 4 & 6 \\ \hline \end{array}$ Moving forward the children use a more compact method.

Now I can subtract my ones.

Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens.

Now I can take away eight tens and complete my subtraction

Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.

This will lead to an understanding of subtracting any number including decimals.

	5	12		1
2	6	3	\cdot	0
	2	6	\cdot	5
2	3	6	.	5

Multiplication

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract \\
\hline Appendix 1Doubling \& \begin{tabular}{l}
Use practical activities to show how to double a number. \\
double 4 is 8
\[
4 \times 2=8
\]
\end{tabular} \& \begin{tabular}{l}
Draw pictures to show how to double a number. \\
Double 4 is 8

\square
\square
\square
\square
\end{tabular} \& Partition a number and then double each part before recombining it back together.

\hline | Appendix 2- |
| :--- |
| Counting in multiples | \& Count in multiples supported by concrete objects in equal groups. \& | |
| :--- |
| Use a number line or pictures to continue support in counting in multiples. | \& | Count in multiples of a number aloud. |
| :--- |
| Write sequences with multiples of numbers. |
| $2,4,6,8,10$ |
| $5,10,15,20,25,30$ |

\hline
\end{tabular}

Appendix 3- Repeated addition	Use different objects to add equal groups.	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures.
Appendix 4-Arrays- showing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences. Link arrays to area of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Division

Objective and Strategies	Concrete	Pictorial	Abstract
Appendix 1Sharing objects into groups	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities.	Share 9 buns between three people. $9 \div 3=3$
Appendix 2- Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number line to show jumps in groups. The number of jumps equals the number of groups.	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

	$96 \div 3=32$ (1) (-)	Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	
Appendix 3- Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$
Appendix 4Division with a remainder	$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder.	Complete written divisions and show the remainder using r.

Appendix $5-$
Short division

